• Tags
  • Documentation
  • Order
  • Register
  • Login
Duet3D Logo Duet3D
  • Tags
  • Documentation
  • Order
  • Register
  • Login

Polycarbonate build plate…. No bed heat Success!!!

Scheduled Pinned Locked Moved
General Discussion
24
136
24.0k
Loading More Posts
  • Oldest to Newest
  • Newest to Oldest
  • Most Votes
Reply
  • Reply as topic
Log in to reply
This topic has been deleted. Only users with topic management privileges can see it.
  • undefined
    Whitewolf
    last edited by 18 Jul 2017, 15:20

    The problem with heat is depending on the filament you can make things stick so good that you wont be able to get them off.

    Things like nylon 910 will benefit from 55c and others like acetal pom…. This really isnt a new idea go read about Fleks3D build plate. heat is not a friend of PC in most situations.

    Especially heat above 55c i even got Igus Iglidur filament to weld to the build plate at 60c (i have tested stuff up to 120c and had a couple situations where it was extremely difficult to even sand the old filament off the bed plate.

    Also the PC plate begins to warp above 55c

    My rule of thumb really is no heat until i come across a filament that shows signs of warping then i use a brim or add 55c heat

    The trickiest filaments have been acetal pom and the taulman nylon series but they are doable with 55c

    Also when you say lexan are you talking clear lexan? if you look at my posts a few up where i show the photo of the Fleks3d build plate... i can tell you from experience that clear does not stick as well as the black on such a large range of filaments... Fleks3d is a commercial build plate from clear lexan and inwas never getting the results that i am from black PC

    Exploring the universe wherever the tech blows

    1 Reply Last reply Reply Quote 0
    • undefined
      Whitewolf
      last edited by 18 Jul 2017, 15:29

      read posts like these: https://www.duet3d.com/forum/thread.php?pid=18708#p18708

      also read about Fleks3d build plate for part removal the key is not heat, it really isnt needed

      Exploring the universe wherever the tech blows

      1 Reply Last reply Reply Quote 0
      • undefined
        okercho
        last edited by 22 Jul 2017, 23:50

        Hi there!

        After several prints I must say I'm still impressed with PC, it's the best print surface I've used so far, although is not perfect of course… here a few impressions and a question:

        • PLA and PETG (so far, the materials I've printed with) sticks perfectly... sometimes it sticks too much.
        • The Z Offset is really important and depends on the material you're printing with... for PLA I need to setup a 0.1 offset, for PETG I'm still testing, but 0'25 seems to be OK. If you're closed to the bed, you won't be able to unstick the part without breaking it...
        • I have a white and a transparent PC sheet, the white one seems to be more flat than the transparent one, and sticks more too... I will need to sand it a bit more probably.
        • Usually bending the sheet is enough to unstick the part... it starts to "crack" a bit, and then you can remove it. The problem here is that if the part is too small or too thin, the part will bend with the bed, and it's harder to remove.

        And now the question for @Whitewolf:
        After you told me about the "cup", I've been using the bulldog clips and the surface is really flat as per the probe, however, I've observed that even though the parts are not warped from the bed, the base of the part seems to be bended... and I'm thinking the problem is that even with the clips, the plastic bend the surface with cooling down, so the part is a bit bended, similarly when you've warp problems... did you observed this? Any advice?

        Cheers!

        Okercho
        Custom Prusa i3 Hephestos with Duet Wi-Fi
        E3d V6 with Bondtech BMG DirectDrive and PrecisionPiezo Sensor
        Rebuilding Hypercube Evolution

        1 Reply Last reply Reply Quote 0
        • undefined
          llamatrails
          last edited by 23 Jul 2017, 17:04

          Instead of sanding, would matte (or frosted or satin) finish PC work ?

          For example:
          https://www.amazon.com/gp/product/B00II1QY9Y/ref=s9_dcacsd_dcoop_bw_c_x_1_w

          1 Reply Last reply Reply Quote 0
          • undefined
            bot
            last edited by 23 Jul 2017, 17:40

            @okercho:

            Hi there!

            After several prints I must say I'm still impressed with PC, it's the best print surface I've used so far, although is not perfect of course… here a few impressions and a question:

            • PLA and PETG (so far, the materials I've printed with) sticks perfectly... sometimes it sticks too much.
            • The Z Offset is really important and depends on the material you're printing with... for PLA I need to setup a 0.1 offset, for PETG I'm still testing, but 0'25 seems to be OK. If you're closed to the bed, you won't be able to unstick the part without breaking it...
            • I have a white and a transparent PC sheet, the white one seems to be more flat than the transparent one, and sticks more too... I will need to sand it a bit more probably.
            • Usually bending the sheet is enough to unstick the part... it starts to "crack" a bit, and then you can remove it. The problem here is that if the part is too small or too thin, the part will bend with the bed, and it's harder to remove.

            And now the question for @Whitewolf:
            After you told me about the "cup", I've been using the bulldog clips and the surface is really flat as per the probe, however, I've observed that even though the parts are not warped from the bed, the base of the part seems to be bended... and I'm thinking the problem is that even with the clips, the plastic bend the surface with cooling down, so the part is a bit bended, similarly when you've warp problems... did you observed this? Any advice?

            Cheers!

            I do not use PC, but PEI as a build surface, which has the "cup" and is secured with a clamp to keep it flat, and have experienced the same thing – the bottom of very large prints will "cup" in the same way that the build surface would if released from the clamps.

            I wonder if there is a way to get pieces of plastic that "cup" to be more flat by relieving the internal stresses that causes the warping? Maybe heating the pieces in an oven at controlled temperatures, while held between two precision flat plates?

            *not actually a robot

            1 Reply Last reply Reply Quote 0
            • undefined
              DjDemonD
              last edited by 23 Jul 2017, 19:16

              This is why these surfaces are generally bonded with 3M 468 adhesive to the aluminium/glass substrate. Otherwise they warp too.

              Simon. Precision Piezo Z-Probe Technology
              www.precisionpiezo.co.uk
              PT1000 cartridge sensors NOW IN, just attach to your Duet board directly!

              1 Reply Last reply Reply Quote 0
              • undefined
                Whitewolf
                last edited by 23 Jul 2017, 21:16

                @DjDemonD:

                This is why these surfaces are generally bonded with 3M 468 adhesive to the aluminium/glass substrate. Otherwise they warp too.

                Only problem with that is you would need a mic6 plate underneath to be effective.

                Also it would remove one of the key elements that make working with PC build plates easy and that is the ability to remove plates and flex to pop the part off and you would end up with some situations where parts were very difficult to remove

                Exploring the universe wherever the tech blows

                1 Reply Last reply Reply Quote 0
                • undefined
                  bot
                  last edited by 23 Jul 2017, 21:22

                  The phenomenon we are taking about isn't due to the build surface warping – it seems to be due to internal stresses of the build plate, when held flat, being transferred to the print. The prints are flat on the build plate, and the build plate is flat, but upon removal, the bottom of the print becomes convex, to a similar degree to the curve of the buildplate, if the buildplate wasn't being held flat -- I don't think adhesive under the plastic is going to alleviate this situation.

                  Also, keep in mind, I'm talking about thick pieces of PC or PEI, 3mm minimum in thickness.

                  *not actually a robot

                  1 Reply Last reply Reply Quote 0
                  • undefined
                    Whitewolf
                    last edited by 23 Jul 2017, 21:23

                    @okercho:

                    Hi there!

                    After several prints I must say I'm still impressed with PC, it's the best print surface I've used so far, although is not perfect of course… here a few impressions and a question:

                    • PLA and PETG (so far, the materials I've printed with) sticks perfectly... sometimes it sticks too much.
                    • The Z Offset is really important and depends on the material you're printing with... for PLA I need to setup a 0.1 offset, for PETG I'm still testing, but 0'25 seems to be OK. If you're closed to the bed, you won't be able to unstick the part without breaking it...
                    • I have a white and a transparent PC sheet, the white one seems to be more flat than the transparent one, and sticks more too... I will need to sand it a bit more probably.
                    • Usually bending the sheet is enough to unstick the part... it starts to "crack" a bit, and then you can remove it. The problem here is that if the part is too small or too thin, the part will bend with the bed, and it's harder to remove.

                    And now the question for @Whitewolf:
                    After you told me about the "cup", I've been using the bulldog clips and the surface is really flat as per the probe, however, I've observed that even though the parts are not warped from the bed, the base of the part seems to be bended... and I'm thinking the problem is that even with the clips, the plastic bend the surface with cooling down, so the part is a bit bended, similarly when you've warp problems... did you observed this? Any advice?

                    Cheers!

                    Are you using heat with your bed? The majority of parts should easily pop off if no bed heat is used and it is properly sanded… I see many people doing things differently, different grit sand papers etc adding bed heat etc and then wondering why their results vary. I didnt start with 60 grit... i chose it because it worked better than others

                    You are sanding differently, you are squishing, are you running bed heat too? Honestly this works flawlessly for me, time and time again... it is not until you introduce these other elements that things tend not to work.

                    Exploring the universe wherever the tech blows

                    1 Reply Last reply Reply Quote 0
                    • undefined
                      Whitewolf
                      last edited by 23 Jul 2017, 21:32

                      @bot:

                      @okercho:

                      Hi there!

                      After several prints I must say I'm still impressed with PC, it's the best print surface I've used so far, although is not perfect of course… here a few impressions and a question:

                      • PLA and PETG (so far, the materials I've printed with) sticks perfectly... sometimes it sticks too much.
                      • The Z Offset is really important and depends on the material you're printing with... for PLA I need to setup a 0.1 offset, for PETG I'm still testing, but 0'25 seems to be OK. If you're closed to the bed, you won't be able to unstick the part without breaking it...
                      • I have a white and a transparent PC sheet, the white one seems to be more flat than the transparent one, and sticks more too... I will need to sand it a bit more probably.
                      • Usually bending the sheet is enough to unstick the part... it starts to "crack" a bit, and then you can remove it. The problem here is that if the part is too small or too thin, the part will bend with the bed, and it's harder to remove.

                      And now the question for @Whitewolf:
                      After you told me about the "cup", I've been using the bulldog clips and the surface is really flat as per the probe, however, I've observed that even though the parts are not warped from the bed, the base of the part seems to be bended... and I'm thinking the problem is that even with the clips, the plastic bend the surface with cooling down, so the part is a bit bended, similarly when you've warp problems... did you observed this? Any advice?

                      Cheers!

                      I do not use PC, but PEI as a build surface, which has the "cup" and is secured with a clamp to keep it flat, and have experienced the same thing – the bottom of very large prints will "cup" in the same way that the build surface would if released from the clamps.

                      I wonder if there is a way to get pieces of plastic that "cup" to be more flat by relieving the internal stresses that causes the warping? Maybe heating the pieces in an oven at controlled temperatures, while held between two precision flat plates?

                      Honestly i think bed heat is the issue here, most people run PEI with a heated bed.

                      I have printed objects as large as 80mil vase bottoms without any cupping…. but then again i do not use a heated bed and I am not having to squish anything to get first layer adhesion.... with the exception of a couple specialty filaments like Igus Iglidur, Nylon and Acetal POM. with those i either run a large brim with no bed heat or 55c bed heat with no brim but only on those specialty filaments, i have not had issues with 0 bed heat with any of the others that i have tested

                      I also always print at the low end of temps... if these guys are running PLA for instance at 215 then they are going to get a whole different set of issues.

                      Exploring the universe wherever the tech blows

                      1 Reply Last reply Reply Quote 0
                      • undefined
                        bot
                        last edited by 23 Jul 2017, 21:36

                        Heat was definitely my theory, as well. If Okercho responds positively that he was using bed heat, then I will consider that the primary suspected culprit.

                        *not actually a robot

                        1 Reply Last reply Reply Quote 0
                        • undefined
                          DjDemonD
                          last edited by 23 Jul 2017, 21:41

                          @Whitewolf:

                          @DjDemonD:

                          This is why these surfaces are generally bonded with 3M 468 adhesive to the aluminium/glass substrate. Otherwise they warp too.

                          Only problem with that is you would need a mic6 plate underneath to be effective.

                          Also it would remove one of the key elements that make working with PC build plates easy and that is the ability to remove plates and flex to pop the part off and you would end up with some situations where parts were very difficult to remove

                          My current printbite surface is bonded to a machined tooling plate. Or I'd use glass.

                          I've had a sample of 3mm thick PEI which deformed as the bed heated up.

                          I haven't seen the effect you are describing in prints myself so a I apologise if I assumed this was the PC deforming under heating.

                          Simon. Precision Piezo Z-Probe Technology
                          www.precisionpiezo.co.uk
                          PT1000 cartridge sensors NOW IN, just attach to your Duet board directly!

                          1 Reply Last reply Reply Quote 0
                          • undefined
                            Whitewolf
                            last edited by 23 Jul 2017, 21:57

                            @bot:

                            Heat was definitely my theory, as well. If Okercho responds positively that he was using bed heat, then I will consider that the primary suspected culprit.

                            He has done many things differently in preperation of his plate and the way he prints. I did a lot of testing before posting this thread… from starting with 120 grit paper on down till i settled on 60 grit and wet sanding.

                            I tried all kinds of bed temps from 0 all the way up to 120c, i tried all kinds of filaments and different z offsets for every filament.... i even moved hotend temps up and down to see the results.

                            I can tell you from experience, i had parts that were impossible to remove and needed sanding just to get the filament off. I had parts that removed too easily etc... every variable gave different results.

                            If he has done things right there should not be more than a little twist of the part or a little tap with a scraper to get the part off (yes i have even removed 200mm single wall vases without breaking the part just by flexing the plate but flexing is usually not required for most parts only about 10% of the time if done right)

                            If people want to venture off and do things differently then they will experience the same issues i experienced before finding what works and what doesnt.

                            The point of me sharing the advice and thread was so others could skip past all that and get on with printing.

                            Exploring the universe wherever the tech blows

                            1 Reply Last reply Reply Quote 0
                            • undefined
                              Whitewolf
                              last edited by 23 Jul 2017, 22:00

                              Here is my x carriage printed on this very plate with Taulman Guidl!ne (PETG)

                              One photo i gave a slight angle so you can see the surface, the other is direct on so you can see it is completely flat


                              Exploring the universe wherever the tech blows

                              1 Reply Last reply Reply Quote 0
                              • undefined
                                Whitewolf
                                last edited by 23 Jul 2017, 22:10

                                @DjDemonD:

                                @Whitewolf:

                                @DjDemonD:

                                This is why these surfaces are generally bonded with 3M 468 adhesive to the aluminium/glass substrate. Otherwise they warp too.

                                Only problem with that is you would need a mic6 plate underneath to be effective.

                                Also it would remove one of the key elements that make working with PC build plates easy and that is the ability to remove plates and flex to pop the part off and you would end up with some situations where parts were very difficult to remove

                                My current printbite surface is bonded to a machined tooling plate. Or I'd use glass.

                                I've had a sample of 3mm thick PEI which deformed as the bed heated up.

                                I haven't seen the effect you are describing in prints myself so a I apologise if I assumed this was the PC deforming under heating.

                                That is the problem, it does deform if bed heat is used, you also get difficult to remove parts if heat is used… the only temp that I have found that can be used is up to 55c but this should only be done if required with a select few filaments.

                                My rule of thumb is no heat unless i experience warping then ill try a brim if that doesnt work then ill set bed temp up to 55c but i have only had to do this with a select few specialty engineering filaments... so if someone finds themselves having different results then they need to ask themselves what they are doing differently, did they follow my advice to a T or did they venture off the path and do things a little differently

                                Exploring the universe wherever the tech blows

                                1 Reply Last reply Reply Quote 0
                                • undefined
                                  okercho
                                  last edited by 23 Jul 2017, 22:37

                                  I'm not trying to do things differently. If I did something in a different way is because I didn't understand it correctly, or because my DIY skills and tools are not the best for the job…

                                  I'm not using heat bed since I'm using PC as build plate, also I'm only having "cupping problems" in the bottom of the parts with PETG, a material I didn't use a lot before (because I had warping problems) and which I'm still struggling with... With PLA I'm not having problems at all, nor for removing, nor for sticking, although is true that I din't find the right point yet, where there is not "elephant foot", I know I'm still squishing PLA a bit.

                                  For PETG I tried different Z offsets, and I had a mix of results, sometimes I wasn't able to remove the part (and I broke it trying to remove it) because I was too close (0'20 offset) to the bed, and sometimes having problems with the circles in the first layer because I was too far (0'25 offset), apart from the fact that I'm having problems with the temperature and flow for this material, but that's another story.

                                  Additionally I have 2 PC sheets, one transparent (at least, it was transparent at the beginning) and another one white. The transparent one is "cupped" (not sure about the word, but you all know what I mean), and with the bulldog clips well positioned, the bed seems really flat, you can press and the sheet won't move down in any point, and the probe says the surface is quite well leveled, however, when I remove the clips, the cup is more visible than at the beginning, and I can see the bottom of the part is "cupped" too when I remove it successfully. The white one is perfectly flat, but as I had a problem when I tried to remove one piece, I couldn't use it until today, when I sanded it again. PETG anyway is a material that makes a lot of force when cooling down, I used blue painter tape and it ripped out the tape from the bed when cooling...

                                  @Whitewolf, I'm sorry if you felt like I'm criticizing you, I'm not, I truly appreciate what you did sharing this with us, and trust me, this is the best surface I've ever used (even if apparently I didn't follow the instructions :P), but you've been using it for a long time meanwhile I'm still learning how to use it, and I just ask to take advantage of your experience, to try not to fail in the same ways you failed in the past, anda I'm just trying to share my experience from a newbie point of view, sharing my failures, my successes, what I did and how, so I can receive advice and others can learn from me, same I'm trying to learn from you and others in this forum.

                                  Regards

                                  Okercho
                                  Custom Prusa i3 Hephestos with Duet Wi-Fi
                                  E3d V6 with Bondtech BMG DirectDrive and PrecisionPiezo Sensor
                                  Rebuilding Hypercube Evolution

                                  1 Reply Last reply Reply Quote 0
                                  • undefined
                                    bot
                                    last edited by 23 Jul 2017, 23:07

                                    The convex surface I describe is only on LARGE surface area prints – like 200 mm diameter flat circles, or large rectangular areas. Small prints like the ones which you (Whitewolf) show do not exhibit any convex bottom surface. Also, it does sound very similar to what Okercho is describing: the print is flat when adhered to the surface, the surface is flat when clamped (or bonded) to the tooling plate, but when the print is removed, the bottom surface sometimes reveals a convex condition.

                                    At first, I too suspected heat -- perhaps the differential of surface temperature from the middle of the bed to the outer edge causes a differential contraction rate when printing/cooling. However, on printers with different surfaces, but which exhibit less even heating on the heat bed, I do not observe this phenomenon -- only on the printers which I run which have a convex/concave (depending on which way you look at the piece) print surface that has been clamped down do I observe this.

                                    *not actually a robot

                                    1 Reply Last reply Reply Quote 0
                                    • undefined
                                      DjDemonD
                                      last edited by 23 Jul 2017, 23:11

                                      This surface from what I read seems to behave like a surface I was testing for someone on reprap. 55 degrees is all it takes for difficult filaments anything more or any squash down on the first layer with abs especially and you won't get it off. The surface I tried was only very thin so I bonded it to glass and an abs part, as it contracted, held so well to the surface it cracked the surface.

                                      This explains to me anyway why printbite works the way it does it only sticks at high temps so it releases at fairly high temps too. Not the best adhesion, but enough and with the convenience of being able get parts off fairly easily. But it's not $15 a sheet and isn't available more or less anywhere.

                                      Simon. Precision Piezo Z-Probe Technology
                                      www.precisionpiezo.co.uk
                                      PT1000 cartridge sensors NOW IN, just attach to your Duet board directly!

                                      1 Reply Last reply Reply Quote 0
                                      • undefined
                                        Whitewolf
                                        last edited by 23 Jul 2017, 23:12

                                        Theres just a couple of things here, issues that you reported a few posts up about part removal. You sanded your plate with 120 yes you started with a lower grit but you finished with 120.

                                        When i started this project it was with 120 and parts were sticking too well. When i dry sanded the sanding was not consistent and different edges of the part would stick differently. I settled on the combination of water and 60 grit which gave me the best balance of part removal and adhesion.

                                        When the build plate eventually gets a sheen to it like found with 120 grit i find that its time to sand again because stuff starts sticking too well.

                                        PETG is easy to print on this plate, if you are not using bed heat and your nozzle temp (what is your nozzle temp?) is in the lower range and you are experiencing warping then i suspect either a bad brand or bad roll.

                                        The photos i provided above and in many photos before it are PETG.

                                        When your clips are on and you do a mesh bed compensation what does the center of your bed say compared to the outside edges of your bed I am just curious if there is still a little cup in your bed, coupled with a bad filament

                                        Here is some other examples, the pink single wall is PLA as you can see there is little to no squish. The clear one is PETG it is also the photo i provided above of the completed part without cupping. The white one is igus iglidur which easily warps like ABS which is why you see the brim but even after cooling none of these parts have that issue which is why i suspect other variables at play here. Nylon is the only filament that has given me a rough time with this plate

                                        Sorry if i got frusterated, I just felt like i was pretty detailed in the methods that i found worked before ever posting this thread then i see people venturing off doing things a little differently then wondering why they experience different results. Results that i myself experienced until i found what worked.



                                        Exploring the universe wherever the tech blows

                                        1 Reply Last reply Reply Quote 0
                                        • undefined
                                          bot
                                          last edited by 23 Jul 2017, 23:28

                                          We're not talking about lack of adhesion while printing – we're talking about effects AFTER the part is removed from the build surface... nobody is attacking your idea.

                                          *not actually a robot

                                          1 Reply Last reply Reply Quote 0
                                          69 out of 136
                                          • First post
                                            69/136
                                            Last post
                                          Unless otherwise noted, all forum content is licensed under CC-BY-SA