@Toddimus:
they have a pretty compelling reason that their thermistor is better. It has high resolution in the ~180C to ~280C range, which is exactly where we want to heat a hot end. The resolution at room temperature is bad, but that doesn't really matter much to us.
We actually do care about room temperature measurements. (I say this having calibrated my hot end thermistor to read about five degrees high at room temperature because that makes it better around 200 C.) The actual values are not very important, but reliable detection of heater faults is essential for fire prevention. If you have an apparent open condition at room temperature, the business of detecting whether the hot end temperature is rising by the right amount becomes more challenging. As long as the firmware can reliably detect when the thermistor has fallen off the hot end partially or completely it's not a problem, but if users get frustrated with spurious heater faults and use unsafe settings a fire risk can arise. This seems like a pretty important design criterion for a hot end - does it present an increased risk of setting your printer on fire if something goes wrong?
It's not clear to me that thermistor precision is the limiting factor in hot end temperature management. Certainly it isn't on mine, where my thermistor doesn't fit into the proper place on the E3D heater block so it's stuck in place with thermal goop. Making sure that the temperature-measuring device is measuring the temperature of the plastic being extruded is a key concern, particularly when extruding rapidly so that fresh cold filament is coming into the melt zone. The thermal conductivity between the heater, the melt zone, the nozzle, and the temperature sensor matters a lot here, as do the thermal masses of the various parts and the heat flux through the heat break. I'm sure Dyze has done a good job of all this, but I suspect that even in good hot ends these issues are what limits how well we can control the temperature of our extruded plastic.
I'd also point out that the time constant inferred by the Duet temperature calibration process tells us something about our hot ends - precision temperature control in the face of environmental insults (cooling fans, fresh cold filament, retraction) will work much better if that time constant is shorter, so that the PID loop can respond rapidly to changes. Simply changing the PID numbers won't help; the issue is how long the thermistor takes to notice changes in plastic temperature, which has to do with thermal mass and conductivity.